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An algorithm is given for the numerical solution of the Boltzmann 
equation for a one-dimensional unmagnetized plasma with immobile 
ions, in which collisional effects are described by the Bhatnagar- 
GrossKrook (BGK) model. The algorithm is a straightforward general- 
ization of the splitting scheme, which solves the one-dimensional 
Vlasov-Poisson system. The accuracy of the splitting scheme to second 
order in dt is preserved. c 1332 Academic Press. Inc 

1. INTRODUCTION 

Considerable progress has been made in the last ten years 
in understanding the nonlinear evolution of stable and 
unstable plasma waves [l-S] thanks to the appearance 
of the splitting scheme algorithm [l], which solves the 
Vlasov-Poisson system (VP) for a one-dimensional 
unmagnetized collisionless plasma with fixed ions 

aE 
%=l-{fdv. 

(1) 

Here, XE[O,L], UE(-co,cr;,) and t~[O,co) are the 
space, velocity, and time variable (measured in units of the 
Debye length, the thermal velocity, and the plasma period, 
respectively); E = E(x, t) is the self-consistent electric field 
and f = f (x, u, t), the electron distribution. 

Besides some analytical results concerning the full non- 
linear collisionless problem [6, 71, models have been 
developed (see [S, 91 and references cited therein) in which 
a small collisional term is included in Eq. (1) in the 
Bhatnagar-Gross-Krook (BGK) form [ 10, 111; in par- 
ticular, interesting predictions have been made about 
the saturation of weakly unstable modes with possible 

* Present address: Chemistry Dept., University of British Columbia, 
2036 Main Mall, Vancouver, BC, Canada V6T lY6. 

appearance of double frequency behaviour [S, 91. Some 
numerical calculations have been performed for the BGK 
modei in the case of a neutral gas by means of finite 
difference techniques [ 12, 131. 

With the BGK collision operator, Eq. (1) becomes 

f++Ez=L.(feq-f), (14 

with v the (dimensionless) collision frequency and f,, the 
local Maxwellian; i.e., 

f&5 v, t)=p(x, t) M(u), (3) 

with p(x, t) = jfdv and M(v) = exp( -v2/2)/,,/%. 
Equations (la)-(2) are to be solved subject to the initial 
condition f (x, v, 0) - g(x, v); moreover, we impose periodic 
boundary conditions, i.e., f (0, v, t) = f (L, v, t) and E(0, t ) = 
E(L t). 

In this work, we show how the BGK model can be 
incorporated in the splitting scheme and produce a few 
examples showing the effect of collisions on linearly stable 
(Landau damping) and unstable distributions. As far as the 
numerical verification of the theory developed in [IS, 91 is 
concerned, we have not been able to observe the kind of 
behaviour predicted there, but this is probably due to 
the difficulty in preparing the initial data according to the 
given prescription, which requires a good deal of separate 
numerical work. 

2. THE METHOD 

The Vlasov-Poisson system (1 t(2) is equivalent to the 
characteristic system 

i=v (4) 
ri= -E(x, t) (5) 
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(with aE/ax = 1 -J fdv). The distribution function is 
constant along the characteristic lines given by the solution 
of (4b(5), so that its value at the time f on the point (x, u) 
of the phase space can be found by tracing back to t = 0 the 
characteristic line passing by (x, f) at time t. 

For the numerical solution the phase space has to be dis- 
cretized and a cutoff V has to be introduced in the velocity 
variable. Let {xi, v,}, i = 1, N + l;.j = 1, M be the discretized 
phase space, with x1=0, x,,,=L, v,= -V, v,=V, 
X r+l = X, + AX, Vj+ 1 =v,+Av, Ax=L/(N-I), and Av= 
2 V/(M - 1). At each time t, the M x (N + 1) values for the 
distribution function at each mesh point,f(xi, vi, t) =fi,(t), 

i = 1, N + 1;j = 1, A4, have to be calculated, with the bound- 
ary conditions 

f.Nj(t)=flj(t), j=l,M 

f N+ I,jtt) =f2jtt)9 j=l,M 

f&f) =fi,(t) = 0, i= 1, N+ 1. 

The splitting scheme performs the integration of (VP) 
along the characteristics using interpolation methods. 
Suppose that the values off at the time t-At on the mesh 
points,&(t-At), i= 1, N+ l,j= 1, M, are known. Let us 
define, for convenience, x,(t - At) and vii(t - At) as the 
solution of the characteristic system (4 j(5) corresponding 
to the boundary conditions x(t) = xi and v(t) = ui. Then, the 
values off at the time t on the mesh points coincide with 
the values off at the time t-At on the off-mesh points 
(x,(t - At), u,(t - At)): f,Jt) =f(x,(t - At), v,(t - At), 
t-At). These values of f are interpolated from the 

fi,(t - At); in our code the interpolation is performed by 
using cubic splines (an alternate version of the algorithm 
exists, which uses fast Fourier transforms to operate the 
interpolation [14]). It has been shown that this scheme 
gives the solution correct to second order in At. In 
particular, the integrated equations for the characteristics 
give [l] 

x,(t - At) =x, -u, At 

- fE; At* + O(At3) (6) 

u,(t-At)=v,+EiAt+O(At3), (7) 

where Ei is the value of the electric field at t + At/2 (see [l] 
for details). 

The integration over u, which gives the density, can be 
expressed as 

PCxi, t, E Prlt)= f wj.fy, (8) 

j= I 

where the wj’s, j= 1, A4, are the weights, which depend on 
the integration scheme used. For example, in our code 

(which we have implemented on the Cray Y-MP of the 
Pittsburgh Supercomputing Center, see [ 151) we have used 
Simpson’s i rule, for which the weights are 

1 

3 AU/~, j=landM 
wj= 6 Av/8, j==4, 7, 10, . . . . M-3 

9 A@, otherwise. 

The integration over x, which gives the electric field is 
performed by using Fourier transforms. 

In the presence of collisions, f(x, u, t) is no longer con- 
stant along the Vlasov characteristics, since instead of 
dfldt = 0 we now have df/dt = - v( f - fe,), so the idea for 
producing numerical solutions of (la)-(2) is to account for 
the variation off along the Vlasov characteristics at each 
time step. We now have 

f(x(t), u(t), t) = f(x(t - At), v(t - At), t-At) 

s 

I 
-V dt’ Cf(x(t’), v(t’), t’) 

/-AI 

- dx(t’), t’) WV(f))1 

which, after using the trapezoidal rule, becomes 

f(x(t),u(t), t)=f(x(t-At),v(t-At), t-At) 

-v q Cf(x(t), 4th t) 

+f(x(t-At),u(t-At), t-At) 

- dx(th t) M(v) 

(9) 

-p(x(t-At), t-At)M(v(t-At))] 

and 

f(x(t), v(t), t) 1 +qt 
( 1 

= f(x(t - At), v(t - At), t-At) 

x 
( ! 

1 - J$ + y [p(x(t), t) M(v) 

+p(x(t-At), t-At)M(u(t-At))], (10) 

where f(x(t), v(t), t) is the unknown value of the distri- 
bution function at the mesh point x(t) = x, u(t) = u, and 
f(x(t - At), v(t - At), t-At) is the value of the distribution 
along the Vlasov characteristic at the time t-At and which 
is calculated by the splitting scheme in the way described 
above. In an analogue way, the values p(x(t - At), t-At) 
are interpolated from the known p,(t- At) using (6). 
Note that, although p is a function of x and t only, 



p(x(t -At), t - dt) depends on u via x(t- dt). With the 
same understanding, M(u( t - At)), which is calculated 
using (7), depends on x. 

With the definitions 

fy=f(x,,(t-At), u,(r-At), t-At) 

p!O’=p(x..(t-At), t-At) rJ rJ 

Mj=M(u,) 

M!P’=M(u.-(t-At)) ‘J ‘I > 

the discretized version of (10) becomes 
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t - dt) and M(u(t - At)). However, since collisions virtually 
remove the filamentation problem [l, 161, fewer mesh 
points are needed in the velocity variable in most cases. 

Note that Eq. (9) is formally correct for any v. However, 
a highly collisional plasma, say v > 1, does not evolve along 
the Vlasov characteristics and the use of this method would 
become impractical, because an unrealistically small time 
step At would have to be used. Therefore, we anticipate that 
the present algorithm can be effectively used for v < 1. The 
use of the trapezoidal rule is consistent with the accuracy of 
the splitting scheme, since the error induced in calculating 
the integral on the r.h.s. of (9) is of the order of (At)3. 

By using (8) we then have 

~;(l++f;;)(l-J$) 

+F E W,filMj+pj;‘M~’ ) 
( /= 1 1 

which, after some straightforward algebra, can be put in the 
matrix form 

FxA=@, (11) 
fo(u)=ln e - 212 

fi” with F, /i, and 0 the matrices whose elements are given by 

F, =fi,> i=l,iV+l; j=l,M 

A,=h;,- 

v At/2 
l+vAt/2 wi"j, i, j= 1, M; 

@,= 1 -v At/2 
l + v Ar:2f $‘+ 1 ::‘z,2 PF’M:,? 

i= 1, N+ 1; .j= 1, M 

(repeated indices are not summed over). Finally, F= 
0 x A-’ solves for the distribution funcion on the mesh 
points at time t. The inversion of ii does not pose any 
problem, since (for v 6 1) it is close to the unit matrix. 

function remained spatially uniform with a time dependance 
in perfect agreement with (12), as can be seen from Fig. 1, 
where f is shown as a function of u at selected times in the 
region of the bump at positive velocities. 

b. Effect of Collisions on Landau Damping 

In carrying out this procedure, the splitting scheme is 
used, first, to find f I/“’ and pj,o’ by interpolation; then, the 
matrix 0 can be constructed and the new values off can be 
found upon multiplication by the inverse of /1. 

The inclusion of collisional effects makes the code slower 
by a factor ~2.5, mainly because of the two new one- 
dimensional interpolations needed to calculate o(x(t - dt). 

As is well known from the solution of the linearized 
Vlasov-Poisson system [ 17, IS], when the initial distribu- 
tion is chosen near a spatially uniform Maxwellian, with the 
further requirement that it be the restriction to the real axis 
of a function analytic in the complex u plane, the electric 
field decreases exponentially in time, its kth Fourier trans- 

,\ \ II form exhibiting damped oscillations at a frequency w and a 

3. EXAMPLES 

a. Relaxation of a Spatially Uniform Distribution 

When the initial condition g(x, u) is any spatially 
homogeneous distribution, say g(x, u) = fo(o), the solution 
of (la)-(2) is known [ 10, 111, 

f(x, u, t) = M(u) + (fo(u) - M(u)) eP’I, (12) 

showing that the system relaxes towards the thermal 
equilibrium with a characteristic time v-r. No spatial 
dependence develops and E(x, t) = 0 for all t. 

This serves as a first check of our numerical scheme. We 
choose a symmetric bump-on-tail initial distribution, 
namely, 

(13) 

with nP = 0.9, nb = 0.1, V. = 4.5, and u, = 0.5. In our simula- 
tion, which we ran up to 50 plasma periods, the electric 
field was identically zero for all t, while the distribution 
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In the presence of collisions, described by the BGK model, 
it is easily seen that the dispersion relation becomes 
Cl% 111 

0.04 

so.03 

0.02 

0.01 

0.00 
2.00 3.00 4.00 5.00 6.00 

V 

FIG. 1. Distribution function for the case of Example a at I = 0 (a); 
I = 10 (b); t = 20 (c); t = 30 (d); t = 40 (e); f = 50 (f). 

damping rate y given by the roots of the Landau dispersion 
relation [ 171, 

(14) 

where z = (o + iy)/k, J.Z is the well known Landau contour 
and f0 = M(u) in this case. Using the plasma dispersion 
function [ 191, defined for Im z > 0 as 

and by analytic continuation for Im z 6 0, Eq. (14) can be 
written as 

(15) 

TABLE I 

Solution of the Dispersion Relation for the Maxwellian Case with 
k = 0.5 

” w Y 

0.0 1.42 -0.15 
0.01 1.42 -0.16 
0.05 1.42 -0.20 
0.1 1.42 -0.25 

1-g 

afob - iMvk du = o 

9 v-z- iv/k ’ (16) 

which gives, for f0 = M(u), 

z + iv/k + ivk 
~ z(yy]=o. (17) 

Equations (15) and (17) can be solved numerically by 
standard techniques. For k = 0.5, w and y are shown in 
Table I for the collisionless case and for three different 
values of v, for which we have followed the time evolution 
of the system up to 35 plasma periods. In all cases, the initial 
condition is 

g(x, u) = fo( v)( 1 + E cos kx) (18) 

with fO(v) = M(o). In Fig. 2 we show the amplitude of the 
fundamental mode of the electric field (i.e., IE, 1, if the 
electric field is expanded according to E(x, t) = 
Ck Ek( t) exp( ikx)) as a function of time in logarithmic scale 
for the cases v = 0.01,0.05,0.1 with E = 0.005. The harmonics 
remain much smaller, as typical of all Vlasov simulations 
with periodic boundary conditions [2,4, 51. The damping 
rates resulting from the numerical simulations are y = 0.16, 

ii 

10-4: 

lo+: 

1 OyJ I I , I I 
25 

I 
5 10 15 20 

J 

30 35 
TIME 

FIG. 2. I.!Tr(f)l in logarithmic scale, 0 < t < 35, for the Maxwellian case 
with k = 0.5 and Y = 0.01 (solid line), v = 0.05 (dashed line), and v = 0.1 
(dotted line). 
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0.19, 0.23, respectively, in good agreement with linear 
theory. 

In a different case, with k = 0.3 and v = 0.1, we also pre- 
sent the level curves of the distribution function at selected 
times (Figs. 3a-d). As typical of Vlasov solutions [S], 
two vortices have formed in phase space, centered at 
fu, = &w/k zz 3.866 (as given by (14)) and travelling 
parallel to the space axis with velocities + ud. Collisions, 
however, by drawing the distribution towards the 
Maxwellian, oppose the formation of such vortices, until 
they disappear between t = 25 and t = 50. Asymptotically, 
the distribution tends to a spatially uniform Maxwellian. 

c. Effect qf Collisions on Linear Instabilities 

The linear dispersion relation again has the form (16) 
now with f0 being different from the Maxwellian. For the 
symmetric bump-on-tail distribution (13), the dispersion 
relation (16) becomes 

where z + = (z f V,)/v,, which, again, can be solved numeri- 
cally by standard techniques. Table II shows w and y for the 
collisionless case and for three values of v and k = 0.3. Note 
that the effect of the BGK collision operator, both for the 
Maxwellian and for the bump-on-tail case, is essentially in 

(4 
7.0 r-1 

3.5 

> 0.0 a 

-3.5 

-7.00 
7 14 1 

X 

(b) 

7.0 . 
(4 

3.5 - 

> 0.0 .- 

-3.5 ; 

-7.06 7 , 14 I 21 
X 

FIG. 3. (aHd)Levelcurvesoff(x,u,t)att=O(a);t=25(b);t=26 FIG. 4. IEl( in logarithmic scale, 0 < t < 100, for the bump-on-tail 
(c); I = 50 (d), for the Maxwellian case with k = 0.3 and v = 0.1. case with k = 0.3 and v = 0.01. 

TABLE II 

Solution of the Dispersion Relation for the Bump-on-Tail Case 
with k = 0.3 

v w Y 

0.0 1.05 0.148 
0.05 1.05 0.098 
0.1 1.05 0.048 
0.15 1.05 -0.002 

a shift, by an amount equal to v, of the imaginary part of the 
eigenvalue. 

In the collisionless case, the unstable mode grows 
exponentially, with the growth rate predicted by the linear 
dispersion relation, until it saturates at some amplitude r 
because of particle trapping; after saturation, the electric 
field amplitude undergoes oscillations at the trapping 
frequency (much smaller than the plasma frequency), 
ob = JkT, these oscillations being damped asymptotically 
[ 3,4, 5, 151. Collisions, by drawing the distribution toward 
a spatially uniform Maxwellian, tend to oppose the 
instability and to detrap particles. In Figs. 4 we show 
IE, 1 (t) in logarithmic scale for v = 0.01 and in Fig. 5 for 
v =0.05, 0.1, and 0.15 with initial condition (18) andf,(u) 
given by (13). Here, k = 0.3 and E = 0.04. In the collisionless 
case, the saturation amplitude is l-z 0.6 which gives 
w,, z 0.4 [S]. The first value of v is much smaller than the 
collisionless growth rate and the trapping frequency. As is 
seen in Fig. 4, the unstable mode grows according to the 

‘J 

I 1 I I 
20 40 60 60 1 

TIME 
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c I ‘-I 

10-70 I I t I I 
20 40 60 60 100 

TIME 

FIG. 5. IE,(r)l in logarithmic scale, 0 < f < 100, for the bump-on-tail 
case with k = 0.3 and v = 0.05 (solid line), v = 0.1 (dashed line) and Y = 0.15 
(dotted line). 

collisionless model until saturation and the onset of the 
oscillations at the trapping frequency occur. Just after the 
first of these latter oscillations, however, enough particles 
have been detrapped and the oscillations are destroyed. In 
the other three cases (Fig. 5) the growth rates are y = 0.097, 
0.047, -0.001, respectively, in agreement with linear theory. 
A remnant of the oscillations at the trapping frequency is 
present in the case with v = 0.05, while they have disap- 
peared in the other cases. In the last case the instability has 
been completely suppressed. 

4. CONCLUSIONS 

In this work we have generalized the splitting scheme 
algorithm, which solves the one-dimensional Vlasov- 
Poisson system with immobile ions, by including collisional 
effects using the BGK model. The new algorithm calculates 
the variation of the distribution function along the Vlasov 
characteristics; this leads to a system of algebraic equations 
for the unknown values of the distribution on the mesh 
points. The accuracy of the splitting scheme (second order 
in dt) is preserved. As a test for the validity of the algorithm 

we offer a few examples, including the’ relaxation of a 
spatially uniform distribution and the effect of collisions 
on linearly stable (Landau damping) and linearly unstable 
distributions. 
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